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We study the problems concerning the frequency distribution density of free linear 
oscillations of a thin shell. Particular attention is given to the effect of concentration 
of frequencies at certain critical points, which was noted in [l- 51. We also estimate 
the domain of a~p~cabi~~ of the asymptotic method of determi~ng the free oscilfa- 
tions of a shell [5-111. 

In [l- 51 the frequency distribution density is studied with the aid of the farmula 
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where o is the frequency of free oscillation of the shell, D is cyiindricai rigidity, p is 
the material density, h is thickness, E is the Young’s modulus, k, and 4 am wave num- 
bers, and R,and RI denote the principal radii of curvature of the surface. 

In (1) the quantities R,and RI must of course be taken as constant. We shall therefore 
assume that the quantity x in (2) satisfies the inequalities 

--IslE<xrsi (3) 
(for which the constants must be suitably numbered). 

Following p - 51 let us set 

and write (1) in the form 
1:: 

(k? + kr2), Q.” = @a 
w 

kl + k$ (5) 

The physical meaning of the notation introduced is obvious ; o’ is the oscillation fre- 
quency of the equivabnt plate, i, e. of the plate whose dime~i~, cylindrical rigidity 
and mass per unit area are identical with those of the shell, and 0” is the osciIIation 
frequency of the shell as a membrane. The effect of the curvatnre of the shell is reflec- 
ted only in on, and the relative contribution of this quantity decreases with increasing 

o. We can therefore divide the 
frequency specuum defined by 
(1) into two parts: one {small 
0~) in which the in&uence of 
curvature is relatively large 
and the other (large o) in 
which this influence is insig- 
nificant. 

Fig. 1 

It can easily be shown that 

Fig. 3 
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for a shell of -Positive curvature 
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we have 

while for that of zero and negative curvature we have 

0 a an < 0% 

We can therefore assume that the division of the spectrum occurs at UJ = OZ., where 
0%. is slightly larger than 0s. This assumption is confirmed by the graphs shown in Figs. 
1 and 2 depicting the oscillation frequency density of the shells, obtained in [I- SJ. The 
horizontal lines appearing on the graphs correspond to the eqilvaient plate. 

Formula (1) was obtained by so called asymptotic method f5-11 J based on a number 
of assumptions. For the time being we shall note two of them: 

1) edges of the shell follow the lines of curvature z, = const and 2s = conat forming 
a curvilinear rectangle and 

2) the dynamic edge effect is not degenerate. 
The name of dynamic (nondegenerate) edge effect was assigned in [S-11 3 to the stress- 

strain state appearing at the she{1 edge during the oscillations, and decaying rapidly. 
with increasing distance from the edge. When the effect, instead of decaying, becomes 
oscillatory, we call it the degenerate dynamic edge effect. 

We shall now obtain the conditions of degeneracy. 
Let us keep the vahre of 61 in (1) fixed and consider this expression as an equation of 

some curve rw (level line) on the Cartesian k,k, plane. Fig. 3 shows the shape assumed 
by the curves y. in the’ first quadrant when 
x) 0 and x<O, and o satisfies the following 

(here the numbers in brackets denote the 

Fig. 3 
curves shown on Fig, 3. Curve 1 becomes 
imaginary when x > 0). 

In the above inequalities o1 and os are given by the formulas (4), while the meaning 
of Q is explained below. 

It can easily be shown that, when o is given and y_ intersects any straight line 4 = 
= const twice in the first quadrant, the dynamic edge effect degenerates at the line 

XX = const ( l ). Having noted that, we shall take $2 in (7) to be the least value of o 
at which v,,intersects any saaight line k, = conat in the first quadrant once only. Then 
the condition of degeneracy can be written as o < hl. The dynamic edge effect is now 
absent or present, depending whether tie latter inequality holds or not. 

Jet us denote by h the set of values of o for which k, (as the function of k, ) has a 
local ma~mum in the first quadrant (the points marked with x in Fig. 3). Then 8 will 
he the upper limit of A. 

To determine Q , let us cpnsider the formula 
dks a02 / akl 
X =- ad/ak% 

* ) This must have escaped the notice of Bolotin, since he includes yU corresponding to 
the degeneration of the edge effect on figures appearing in all his papers dealing with 
the frequency dis~ibut~on density, 
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Since the denominator in its right4and side is bounded, the maximum value of lcs is 
reached at the points at which 

Using this to e~!~ess r in therms of cp and inserting the resultlug expression into (II), 
we obtain A L 0s & cacl”cp + sin s i@“~ (2 sin s’p + x COB 2i# 

from which We sasiiy see that th upper limit of X is reached at ‘p = fd / 2 and is equal 
to @a fc-_. WC can them& write the condition of degeneracy of the dynamic 
edge effect in form of the following inequality: 

@<f&G (8) 
This means that the initial part of the spectrum where (8) holds, contains frequencies 

at which the dynamic edge effect does not exist, i.e. the asymptotic method becomes 
(aS noted in [S-11]) unsuitable. Violation of the inequality (8) implies the existence 
of the dynamic edge ef%ct and validity (from this point of view) of the asymptotic 
method fop computing the corresponding frequencies. The quantity appearing in the 
right-hand side of (8) exceeds slightly 09. It can be tentatively identified with 0~8 and 
this means, that the dynamic edge eff&!t exists only in this part of the spectrum, which 
is weakIy dependent on the curvature of the shell. 

If x = 1 (a sphere). the dynamic edge effect does not degenerate at o < 0%. Moreover, 
from (4)-(6) it follows that this inequality holds for all frequencies in the case of a sphc- 
rical shell I l f . Consequently, in the latter case the dynamic edge effect always exists. 
This also follows from the fact that the curves y,,, degenerate at x = 1 in the circle of 
r = conat. Slnce~y,asaume this shape also when R, = Rz = co, it follows that no dege- 
neration occurs iu a plate. We can also show that the dynamic tdge effect will degeue- 
rate at one of the twu pairs of edges, within the initial part of the spectrum, for any other 
shell. 

In p] the process of investigating the degeneracy of the edge effect was made unne- 
cessarily complicated. Bolodn shoived that the degeneracy is Impossible for the spheri- 
cal shell and the plate, but did not observe that no other shells with this prom exists. 

When deriving (1). addfticxirl. assumptions were made, namely, that a constant metric 
can be estabibhcd on the neutral su?%ce and, that Rr and Rs are constant. 

AS we know, the constant metric is realinabb only on a sutface of zero curvature, and 
constant curvatures R, and Rs can only be found on a sphere, a circular cylinder and a 
plane. Consequently, formulas (1) can only be used for plates, shallow shells and circular 
cylindrical shells qif the wave numbers are large enough, then the rise of the cylindrical 
shell can have any value). 

The behavior of a sufficiently large number of frequencies is characterized by their 
distribution density. There are relatively few freqncncies corresponding to oscillations 
accompanied by small variations in the stress-strdn state. Hence we can justifiably 

l ) Obviously we am discussing the kequencies which can be investigated using the 
asymwtic method, i, e, the frequencies in a spherical shell, rectangular in one plane. 
If, e. g, the shelI has the form of a spherical segment, then some of its kequencies will 
fall to the left of o%,and their number will inc~c?a~e a~ the shell thiclmesa decreases. 
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disregard the errors occurring in the frequencies corresponding to small variations, when 
computing the frequency distribution density. Formula (1) can now be regarded as one 
yielding sufficient accuracy only in calculating the oscillation frequencies corresponding 
to sufficiently large variations. 

Large variations in the stress-strain state imply the appearance of a dense grid of 
nodal lines. Although these lines partition the shell into flat segments, this does not 
mean that formula (1) becomes suitable for a shell of any form and rise. 

In a shell as a whole, R,.and R, may vary over a wide range and we must know, taking 
into account the conditions of the problem, how to compute these constant mean values 
of R, and R, which must be inserted into (1). Until such a method is available, the rela- 
tion (I) will give rise to error independent of the number of frequency. At the same 
time the following relations hold 

from which it follows that at sufficiently large number of frequency B , any relative error 
independent of n will give rise to an absolute deviation from e+*) by an amount exceed- 

ing Q+a+1) - o(~). In other words, formula (1) becomes mote and more erroneous with 
increasing n , and at sufficiently large n it ceases to resolve the neighboring frequencies. 

It follows that the conditions of applicability of the asymptotic method are: 
1) sufficiently small characteristic wavelengths of the oscillation mode ; 
2) almost constant metric of the neutral surface ; 
3) absence of the wave numbers kl and k2 from the regions of degeneracy of the 

dynamic edge effect ; 
4) almost constant curvatures of the neutral surface. 

The first three conditions were given in [S] ch. 8. while the fourth condition follows 
from the foregoing considerations. Only shallow shells and sufficiently short circular 
cylindrical shells satisfy all the above conditions. and even then an exception must be 
made for oscillations arising from the curvature. 

Let us now turn our attention to the results obtained from the frequency distribution 
densities. These are depicted on graphs (Figs 1 and 2). referring to the shells of positive 
and negative curvature respectively. In both cases the ratio of the frequency distribution 
densities of the shell and of the equivalent plate computed by the Courant’s 1121 method, 
is plotted on the ordinate. 

Naturally, the only interesting parts of the graphs are those for which o < a~*, since 
the inequality (8) is violated in these regions, i. e, the dynamic edge effect degenerates 
and formula (I) becomes invalid for an arbitrarily supported shell, 

Thus we have failed to show that the graphs (Fig. 1 and 2) can be referred to arbitra- 
rily supported shells. The graphs were based on (1) which was derived in [5-111 by 
means of the asymptotic method, and the latter breaks down in the most interesting 
parts of the graph (except for a sphere). We must therefore treat Eq.(l) as a formula, 
known for a long time, for computing the frequencies of oscillations of a hinged shell. 
The asymptotic method is not required for its derivation and Figs. I and’ 2 are, strictly 
sneaking, valid only for this case. 

At o= 0~ the graphs have an infinite discontinuity, indicating a substantial concen- 
tration of frequencies. Let us discuss this phenomenon. 

Let a shallow shell approach the limiting plate infinitely near, without however 
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attaining the limit. Then the graphs of the frequency distribution density of the shells 
Will approach the graph depicting the frequencies of the plate, This however will not 
affect the infinite discontinuit)r at w = w2 and this produces a remit which is physi- 
cally inconsistent (concentration of frequencies in a plate of arbitrarily low ctuvatuxe). 
The inconsistency is caused by the fact that the more flattened the shell, the less fre- 
quencies appear in the interval o <OS* , the concept of density therefore, as defined 
by Courant, losing its meaning. 

This constitutes another limitation restricting the range of applicability of the graphs 
in question, namely that a shell of fixed thickness should not be too shallow. 

Let us estimate the number of frequencies falling within the interval o < w%*. We 
have shown before that this is roughly equal to the number of frequencies corresponding 
to the degenerate dynamic edge effect. The latter was computed in (61, where the felt 
lowing inequality was obtained for a square cylindrical panel: 

?ns+nS<&- V/12(1 - u2) 

where Q denotes the side of the square. R is the radius of the cylinder, u is the PoisSon’S 
ratio, m and n are positive integers, each pair corresponding to some oscillation frequen- 
cy of the shell. 

When a/h= iOO,R/a= 1 and Ir= 0.25 (a thin, not very shallow shell), the right- 
hand side of (9) is equal to 34.1; this in turn yields the required number of fnquencies, 
namely 22. This is hardly sufficient for constructing a graph of compkxity comparable 
to that of Fig.2. 

From this point of view, the graphs in question are of practical use only in the case of 
very thin shells, or shells with sufficient rise, But in the latter case R, and fi2 in (1) will 
vary over wide limits, the concept of critical frequencies o1 and o2 will itself become 
indefinite and the infinite discontinuities will be smeared out. The latter process can 
be described qualitatively, by leaning closer towards Courant’s ideas p2]. 

Let us subdivide the shell into elementary segments, each of them representing an 
arbitrarily small square in plan. and assume that the elementary segmenles are hinged 
along the edges. Then formula (1) will yield the frequencies of these ekmentarysheils. 
variations in the values of RI and R2 will now cease to have any effect and, assuming 
that the boundary conditions exert no appreciabk influence on the frequency distribution 
density, we Shall be able to follow Courant’s example, compute the frequency dlstribu- 
tion densiry for an elementary shell and integrate it over the whoie neutral surface, 
This will came the ordinates of the graphs in question to become functkm of zr and z?, 
and the integration will have to be performed over the region occupied by the shell. It 
can easily be shown that the infinite discontinuities now become integrabk and vanish. 
whenever R, and R, deviate from their constant values. 

Note. The above Scheme due to Courant is based essentially on the assertion that 
the frequency distribution density is independent (in the first approximation) of the bound- 
ary conditions. This assertion has been shown to hold for a wide range of equations, 
excluding however the equations of the theory of oscillation of shells. 

Degeneracy of the dynamic edge effect means that the boundary conditions become 
more important. Additional discussion is therefore needed for the Cotrrant’S method. 
before it can be used within the region of degeneracy. 

We may assume that any appreciable concentration of frequencies can remain sharply 
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defined only in the case of constant curvature shells. The larger the variations in R, and 
Rs, the stronger the smearing out effect of the points of concentration. This aspect might 
be interesting to investigate, as in the general case perhaps we ought to speak of the 
regions of concentration and consider the point (or points) to be due to the degeneracy 
caused by the decrease in the domain of variation of -Rx and &The astmptotic method 
[S-11] must be used here with great care, since, as we have shown before, it has no pro- 
vision for taking the variations in RI and Rs into account. 

A shallow shell shows little variation in curvature. Points of concentration may appear 
on it, provided that it is very thin. 
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